
Solidity 101

Web3 Builders workshop series #3

Disclaimer

• This workshop series is not designed to teach you everything about
blockchain, but it serves as a starting point for you to do your own research

• We will not be going into too much details, but feel free to discuss more about
it with us after the main workshop!

• Feel free to interrupt us anytime you want

• This one is technical lol

•

• Enjoy :)

Ethereum 101 Review

• EVM

• Smart Contracts

• Applications:
– DeFi, NFTs, DAOs, Tokens

• How do we create these applications?

Interact with Ethereum/EVM

- Two ways to interact with
Ethereum/EVM

- Simple actions (send money,
read data, use an existing
contract)-> do these in a
wallet

- Put a smart contract onto the
Ethereum that can be used
later (by yourself or other
people)

- Solidity is the most popular
programming language for EVM
programming

Smart contract

A smart contract can:

- Be an independent entity on blockchain just like a person (has an
address–like an ID)

- It can own assets (e.g. a smart contract can own ETH, USDC, NFTs)

- It can interact with other smart contracts/accounts
A smart contract can not:

- Change its code -> good and bad

- Do things automatically (someone needs to call it)

Lifecycle of smart contract creation

1. Come up with an idea

2. Turn this idea into code (e.g. Solidity)

3. Turn code (human-readable) into something machine understands(binary)
a. If you code has bugs, we may find them by trying to run them – “testing”

4. Upload the binary to blockchain

5. You & and everyone else can use the smart contract

Sample Solidity Code

You need tools…

Option 1:

- node.js(npm)+ hardhat
- (recommended)
- (however it can take long and

requires basic CS knowledge)

Option 2:

- Remix Solidity IDE
- “Integrated”, runs in your browser

Hand-on activities - remix

1. Go to remix.ethereum.org

2. Click the “+” next to the “workspaces”

3. Choose a template -> ERC 721

4. “OK”

From Code to Smart Contract

Code
(Solidity)

Byte code

Upload to Ethereum

Smart
Contract

Wait…

ABI(Application Binary
Interface), metadata

Compiler
(e.g.
solc)

Compile
Deploy

Who do you think you are?

- (Plz leave ur Remix page open)
- You are nobody to the blockchain
- You can’t do anything…. yet

- Let’s go and get you an ID (wallet)

Ethereum accounts and wallets

- Ethereum Account
- An entity that can send transactions, has a balance, and has an address
- Has a

- public key (think about this as your username - in fact the account
address is based off this)

- private key (think about it as a password, do not ever reveal this)
- Ethereum Wallet

- A wallet is an account manager
Create your ethereum wallet here:

Medium article - how to create your metamask account

https://myterablock.medium.com/how-to-create-or-import-a-metamask-wallet-a551fc2f5a6b

Hand-on activities - Metamask

1. Fingers crossed you have a Chrome browser

2. Go to metamask.io

3. Download download, install install….

4. Create a new wallet with me

Wallet tips

1. It helps you use web3 websites and interact with smart contracts
2. The secret key +pw is the only way you can access it
3. You lose it, you can’t “forgot password”
4. Only approve/sign transactions if you know what’s going on

Before we deploy your own “cryptocurrency”

1. Go to goerlifaucet.com
2. Sign up for a free alchemy account
3. Come back to the page
4. Open metamask and copy your public key
5. (you see that copy icon?)
6. Put it in the box and “Send me ETH”
7. You should see your ETH balance update in a bit

Finally… Let’s go deploy - Part 1

1. Go back to Remix
2. On the left bar, 4th icon down (ethereum)

“Deploy and run transactions”
3. Environment -> select Injected Provider

-Metamask
4. Account-> It should auto select the one we

just created
a. If u have multiple, don’t use one u

actually hold real money

Finally… Let’s go deploy - Part 2

1. Click “Deploy”
a. Don’t see it? Go back to the third

tab down and click “Compile”
2. Metamask prompt-> confirm
3. Check the command line output at the

bottom
4. Wait for green check-> Click “view on

etherscan”

Remember this animation?

https://www.figma.com/proto/r34qLPnbRKEhyDXgmWzb52/CIS-2330-Animations?
page-id=0%3A1&node-id=9%3A425&viewport=951%2C287%2C0.05&scaling=co
ntain&starting-point-node-id=9%3A425&show-proto-sidebar=1

https://www.figma.com/proto/r34qLPnbRKEhyDXgmWzb52/CIS-2330-Animations?page-id=0%3A1&node-id=9%3A425&viewport=951%2C287%2C0.05&scaling=contain&starting-point-node-id=9%3A425&show-proto-sidebar=1
https://www.figma.com/proto/r34qLPnbRKEhyDXgmWzb52/CIS-2330-Animations?page-id=0%3A1&node-id=9%3A425&viewport=951%2C287%2C0.05&scaling=contain&starting-point-node-id=9%3A425&show-proto-sidebar=1
https://www.figma.com/proto/r34qLPnbRKEhyDXgmWzb52/CIS-2330-Animations?page-id=0%3A1&node-id=9%3A425&viewport=951%2C287%2C0.05&scaling=contain&starting-point-node-id=9%3A425&show-proto-sidebar=1

Let’s play with our token/cryptocurrency

1. Let me try to give myself money
2. Need to fix my contract a bit
3. In deployed contracts, enter

(your address, number) next to
mint

4. Then check allowance (your
address)

Want more Solidity?

Too bad we are not covering…

But let us know if you are interested, we are happy to make a course for it

Additional Resources

• Full guide to Ethereum Development by Nader Dabit

• Buildspace (platform for awesome project tutorials)

• Youtube videos!

https://naderdabit.notion.site/Nader-s-web3-Resources-for-Developers-a200ed2ef21c4d578dc158df2b882c63
https://buildspace.so/

A Simple Example

pragma solidity 0.8.0;

contract VendingMachine {
 uint funds;
 address owner;

 constructor() {
 owner = msg.sender;

 }

 function vend() public {
 require (msg.value == price);
 address buyer = msg.sender;

 funds += msg.value;

 snack.transfer(buyer, 1);
 }

 function withdraw() onlyOwner public {
 owner.transfer(funds);
 }
}

A Simple Example

pragma solidity 0.8.0;

contract VendingMachine {
 uint funds;
 address owner;

 constructor() {
 owner = msg.sender;

 }

 function vend() public {
 require (msg.value == price);
 address buyer = msg.sender;

 funds += msg.value;

 snack.transfer(buyer, 1);
 }

 function withdraw() onlyOwner public {
 owner.transfer(funds);
 }
}

Solidity compiler version

Compiles with Solidity versions
0.8.0.

A Simple Example

pragma solidity 0.8.0;

contract VendingMachine {
 uint funds;
 address owner;

 constructor() {
 owner = msg.sender;

 }

 function vend() public {
 require (msg.value == price);
 address buyer = msg.sender;

 funds += msg.value;

 snack.transfer(buyer, 1);
 }

 function withdraw() onlyOwner public {
 owner.transfer(funds);
 }
}

Contract: collection of
- code (i.e., functions)
- data (i.e., state)

Solidity contracts ≃ classes

Inheritance
State variables
Functions
Events
Enums
…

A Simple Example

pragma solidity 0.8.0;

contract VendingMachine {
 uint funds;
 address owner;

 constructor() {
 owner = msg.sender;

 }

 function vend() public {
 require (msg.value == price);
 address buyer = msg.sender;

 funds += msg.value;

 snack.transfer(buyer, 1);
 }

 function withdraw() onlyOwner public {
 owner.transfer(funds);
 }
}

Declare a state variable
called funds of type unsigned
integer uint

A Simple Example

pragma solidity 0.8.0;

contract VendingMachine {
 uint funds;
 address owner;

 constructor() {
 owner = msg.sender;

 }

 function vend() public {
 require (msg.value == price);
 address buyer = msg.sender;

 funds += msg.value;

 snack.transfer(buyer, 1);
 }

 function withdraw() onlyOwner public {
 owner.transfer(funds);
 }
}

Declare a state variable
called owner of type
unsigned integer address

A Simple Example

pragma solidity 0.8.0;

contract VendingMachine {
 uint funds;
 address owner;

 constructor() {
 owner = msg.sender;

 }

 function vend() public {
 require (msg.value == price);
 address buyer = msg.sender;

 funds += msg.value;

 snack.transfer(buyer, 1);
 }

 function withdraw() onlyOwner public {
 owner.transfer(funds);
 }
}

The constructor is called
exactly once upon
deployment to the blockchain

A Simple Example

pragma solidity 0.8.0;

contract VendingMachine {
 uint funds;
 address owner;

 constructor() {
 owner = msg.sender;

 }

 function vend() public {
 require (msg.value == price);
 address buyer = msg.sender;

 funds += msg.value;

 snack.transfer(buyer, 1);
 }

 function withdraw() onlyOwner public {
 owner.transfer(funds);
 }
}

The msg object contains
various information about the
tx

A Simple Example

pragma solidity 0.8.0;

contract VendingMachine {
 uint funds;
 address owner;

 constructor() {
 owner = msg.sender;

 }

 function vend() public {
 require (msg.value == price);
 address buyer = msg.sender;

 funds += msg.value;

 snack.transfer(buyer, 1);
 }

 function withdraw() onlyOwner public {
 owner.transfer(funds);
 }
}

Define functions to (1)
purchase a snack and (2)
take the money out

A Simple Example

pragma solidity 0.8.0;

contract VendingMachine {
 uint funds;
 address owner;

 constructor() {
 owner = msg.sender;

 }

 function vend() public {
 require (msg.value == price);
 address buyer = msg.sender;

 funds += msg.value;

 snack.transfer(buyer, 1);
 }

 function withdraw() onlyOwner public {
 owner.transfer(funds);
 }
}

require statement is similar to
an assertion. If evaluates to
false, the tx reverts.

msg.value is the amount of
ETH sent with the tx

A Simple Example

pragma solidity 0.8.0;

contract VendingMachine {
 uint funds;
 address owner;

 constructor() {
 owner = msg.sender;

 }

 function vend() public {
 require (msg.value == price);
 address buyer = msg.sender;

 funds += msg.value;

 snack.transfer(buyer, 1);
 }

 function withdraw() onlyOwner public {
 owner.transfer(funds);
 }
}

transfer function
asset.transfer(receiver, amount)

A Simple Example

pragma solidity 0.8.0;

contract VendingMachine {
 uint funds;
 address owner;

 constructor() {
 owner = msg.sender;

 }

 function vend() public {
 require (msg.value == price);
 address buyer = msg.sender;

 funds += msg.value;

 snack.transfer(buyer, 1);
 }

 function withdraw() onlyOwner public {
 owner.transfer(funds);
 }
}

modifier onlyOwner() {
 require(msg.sender == owner);
 _;
}

Modifier is a precondition executed
prior to the function

A Simple Example

pragma solidity 0.8.0;

contract VendingMachine {
 uint funds;
 address owner;

 constructor() {
 owner = msg.sender;

 }

 function vend() public {
 require (msg.value == price);
 address buyer = msg.sender;

 funds += msg.value;

 snack.transfer(buyer, 1);
 }

 function withdraw() onlyOwner public {
 owner.transfer(funds);
 }
}

transfer function
receiver.transfer(amount);

